Absolute Nörlund summability of Fourier series of functions of bounded variation

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On absolute generalized Norlund summability of double orthogonal series

In the paper [Y. Okuyama, {it On the absolute generalized N"{o}rlund summability of orthogonal series},Tamkang J. Math. Vol. 33, No. 2, (2002), 161-165] the author has found some sufficient conditions under which an orthogonal seriesis summable $|N,p,q|$ almost everywhere. These conditions are expressed in terms of coefficients of the series. It is the purpose ofthis paper to extend this result...

متن کامل

Local property of absolute weighted mean summability of Fourier series

We improve and generalize a result on a local property of |T |k summability of factored Fourier series due to Sarıgöl [6].

متن کامل

On the Convergence of Absolute Summability for Functions of Bounded Variation in Two Variables

and Applied Analysis 3 However, Wang and Yu 7 showed that Theorem A is not correct when 0 < α < 1. In fact, they proved the following. Theorem C. Suppose 0 < α < 1, x ∈ 0, π and f are 2π-periodic functions of bounded variation on −π,π . Then for n ≥ 2, one has Rn ( f, x ) ≤ 100 α2nα n ∑ k 1 kα−1Vπ/k 0 ( φx ) , 1.10 and there exists a 2π-periodic function f∗ of bounded variation on −π,π and a po...

متن کامل

Logarithmic Summability of Fourier Series

A set of regular summations logarithmic methods is introduced. This set includes Riesz and Nörlund logarithmic methods as limit cases. The application to logarithmic summability of Fourier series of continuous and integrable functions are given. The kernels of these logarithmic methods for trigonometric system are estimated.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Bulletin of the Australian Mathematical Society

سال: 1970

ISSN: 0004-9727,1755-1633

DOI: 10.1017/s000497270004572x